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ABSTRACT: Tensile deformation of semicrystalline polymers follows a common scheme with changes in
the mechanism at critical strains. Choosing a poly(ethylene-co-12% vinyl acetate) (PEVA12) as an example,
we measured true stress-strain relationships at constant strain rates, determined the elastic and plastic
part of imposed strain in step-cycle experiments, and followed the stress relaxation at fixed strains. On
the basis of the general observations, a model was constructed and then used for a description of the
properties of PEVA12. The model treats the stress as arising from three contributions: quasi-static stresses
originating from the stretched network of entangled chains in the fluid regions and from the
force-transmitting skeleton of crystallites, plus the viscous forces described by Eyring’s equation.
Adjustment of the measured data to the model provides a decomposition of the stress in the three parts.
With increasing strain the dominance shifts from the crystal- to network-transmitted stress, while the
viscous forces increase continuously. Stress relaxation can be treated by an analytical solution of a
differential equation that reproduces the results of the measurements.

1. Introduction

In previous work we studied the tensile deformation
properties of several semicrystalline polymers. Experi-
ments were carried out for linear, branched, and copo-
lymerized polyethylenes,1 poly-1-butene with copoly-
mers,2 syndiotactic polypropylene,3 and poly(ε-capro-
lactone)4 at ambient and for some of the systems also
elevated temperatures.5 Employing a video control in
the stretching device, we always measured true stress-
true strain dependencies for constant strain rates.
Different from the engineering curves which can vary
greatly due to the frequently occurring necking pro-
cesses, these curvesswhich eliminate the necking
effectssclearly demonstrate that tensile deformation of
semicrystalline polymers follows a common scheme.
Deformation mechanisms obviously change at four
critical points which we denote A, B, C, and D. Most
interestingly, the true strains at A, B, and C turn out
to be invariant for each system; i.e., there is no change
with the crystallinity which can be varied by the counit
content and with the temperature. Opposite to the
strain, the stresses at the critical points vary, with
larger values for higher crystallinities and lower values
for higher temperatures. The observation indicates that
the strain rather than the stress is essentially homo-
geneously distributed in the sample. Apparently, the
crystallites in the sample can easily take up any
imposed strain. This is possible because the crystalline
lamellae possess a blocky substructure.6-8 The blocks
can slide against each other and by that take up the
imposed strains. Block sliding sets in at point A at first
as a local process and then turns, at point B, into a
collective motion. The yield point in engineering stretch-
ing experiments is always located shortly above B. In
consideration of the deformation properties a semicrys-
talline polymer can be viewed as a skeleton of crystal-
lites, i.e., coupled blocks, intermingled with a network
of entangled fluid chain sequences. At low stresses or
strains the forces transmitted by the crystal skeleton

dominate, whereas at high strains the rubberlike net-
work forces are superior. The network always exerts a
stress on the crystallites. At point C this stress appar-
ently reaches a critical value where blockssoblique-
oriented ones which experience the highest resolved
shear stresssare no longer stable and become disas-
sociated and transformed into fibrils. Point C, therefore,
is associated with the onset of fibril formation. Polymer
crystallization generally takes place without any dis-
entangling processes; the entanglements existing in the
melt are just shifted into the fluidlike regions. Cold
stretched samples therefore often fully recover on a
melting of the crystallites; the memory on the original
shape of the sample is preserved by the entanglements
of the network. This memory is only lost if the drawing
goes to a state where disentangling starts. Exactly this
is the property of point D. For strains above this point
the entanglement structure changes, the memory gets
lost and the sample does no longer fully recover on
heating into the melt.

Our measurements of true stress-true strain rela-
tionships were always accompanied by recovery tests.
By carrying out a stepwise stretching interrupted by
unloading-loading cycles, it is possible to determine for
each imposed strain which part is irreversible and which
part recovers. It was found that the recoverable, elastic
strain is always limited. It reaches a maximum value
exactly at point C, the onset of fibrillation, and stays at
this plateau value until point D, the onset of disentan-
gling.

Stresses as observed in tensile stretching tests can
be considered as being composed of three contribu-
tions: (i) the forces transmitted by the skeleton of
crystal blocks, (ii) the force brought up by the stressed
amorphous network, and (iii) viscous forces. Stress
relaxation measurements at constant strain provide a
means to determine the viscous forces. In a recent work
such measurements were carried out for poly-1-butene.9
Here, it was found that the amount of stress relaxation
was always finite. The remaining quasi-stationary
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stress can then be associated with the stress kept up
by the crystal skeleton together with the network.

On the basis of the experimental observations, we now
endeavored to construct a model. A model description
should provide a decomposition of the measured stress
into the contributions of the crystal skeleton, the
amorphous network, and the viscosity; it should include
a splitting of the total strain in an elastic and plastic
part, should be able to describe the kinetics of stress
relaxation at fixed strains, and should deal correctly
with the effect of strain rate. This task should be
accomplished with a minimum number of parameters.
Physical knowledge is to be used as far as possible;
however, a model of a complex process like the tensile
drawing of a semicrystalline polymer will always also
include empirical features. In the following we present
such a model. It will be introduced with an example,
the data obtained for a poly(ethylene-co-vinyl acetate).
For this sample the viscous forces, the stresses trans-
mitted by the crystal skeleton, and the stresses pro-
duced by the stretched amorphous network are of
comparable magnitude. Furthermore, because this
sample shows no necking, true stress-strain depend-
encies could be obtained without video control and
therefore with a higher accuracy.

We shall present at first the experimental results and
will then introduce the model, accompanied by some
simple theoretical considerations. Then it will be shown
how the model parameters can be derived from the
experimental data. This paper is the first one of a series
of publications dealing with experiments evaluated in
the framework of the model. The next ones will discuss
the change of Young’s moduli during stretching, rela-
tions between creep and stress relaxation experiments,
temperature dependencies of the model parameters, and
their variation with the crystallinity, at first for poly-
ethylenes and then also for other systems.

2. Experimental Section
The experiments were run using an Instron 4301 tensile

testing device. Bone-shaped samples with a width of 4 mm
were cut out of a 0.5 mm thick melt-crystallized film to carry
out the experiments. As shown by the X-ray scattering
patterns of stretched samples, the texture was always cylin-
drically symmetric; i.e., samples experienced a simple uniaxial
drawing. All the tests were performed under computer control
applying self-developed programs. Different experiments were
carried out:

(i) Determinations of the relationship σ(εH) between the true
stress

(F ) force, A ) varying sample cross section, A0 ) initial cross
section, λ ) extension ratio) and the true strain, also known
as “Hencky strain”

for a fixed Hencky strain rate ε̆H (we assume a constant
volume).

(ii) Step-cycle tests: A stepwise stretching of the sample
with a certain strain rate interrupted after each step with an
unloading-loading cycle, yielding a splitting of the total true
strain in a recoverable cyclic part and a nonrecovered “basic”
part

(iii) Stress relaxation measurements at fixed strains, yield-
ing the time-dependent function

In addition, the device could also be used for creep measure-
ments at fixed true stresses

The stress relaxation and creep measurements were always
carried out immediately after stretching the sample to some
preset initial strain or stress.

The results presented in this work were obtained for a
sample of polyethylene copolymerized with 12 wt % vinyl
acetate counits (PEVA12). As derived from DSC measure-
ments, it had a crystallinity φc ) 0.33. The melting peak was
located at 93 °C. We obtained this sample as a commercial
product from Exxon Chemicals.

3. Results
3.1. Stretching Curve and Step-Cycle Test. Figure

1 shows the true stress-true strain dependence σ(εH)
of the sample selected for the studies (PEVA12) as
obtained for a stretching with a Hencky strain rate of
0.005 s-1. The shape of the curve indicates a strain
softening which is later followed by a hardening. In the
usually presented engineering stress-strain curves the
yield point for necking samples is associated with a
stress maximum and in nonnecking samples with the
point on the curve where the curvature takes on the
maximum value. In true stress-true strain curves of
semicrystalline polymers a stress maximum does not
occursat least we did not find one in all the samples
studied so far. An obvious choice for the yield point is
here again the point with the maximum curvature, and
we call it point B. For this sample we find, as indicated
in Figure 1 stretching, εH(B) ≈ 0.1.

Figure 2 presents the result of a step-cycle test, again
conducted with a strain rate of 0.005 s-1. For a com-
parison also the result of the continuous stretching run
is included. It is found to agree with the series of steps.
Hence, the interruption by the cycles does not change
the stretching properties. The strain recovered in the
unloading down to zero stress gives the cyclic part, and
the remaining strain represents the unrecovered basic
part. The results of this decomposition carried out at
various total strains are presented in Figure 3. The
outcome includes a feature which is representative for
all semicrystalline polymers: The cyclic part of the

Figure 1. PEVA12: true stress-true strain dependence
obtained for a strain rate ε̆H ) 0.005 s-1.

∆σ(t) ) σ(0) - σ(t) (4)

∆εH(t) ) εH(t) - εH(0) (5)

σ ) F
A

) F
A0

λ (1)

εH ) ln λ (2)

εH ) εH,b + εH,c (3)
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strain shows a maximum value at a plateau. This is
reached at εH ≈ 0.6 and continues up to εH ≈ 1.1. As
mentioned in the Introduction, the begin of the plateau
defines the critical point C, the end the critical point D,
and the two points are associated with the onset of
fibrillation processes and of chain disentangling, re-
spectively.

A nonrecovered part of the strain exists already below
the yield point as is shown by the inset in Figure 3. In
fact, plastic flow sets in already at the very begin of the
stretching and shows a break at a strain εH ) 0.04
where we allocate the critical point A. Note that point
B does not show up in the curve. Hence, the strain
softening observed at B is not due to the onset of flow,
as the term yield point would suggest.

3.2. Stress Relaxation Measurements. Figure 4
presents some examples of stress relaxation measure-
ments. Samples were stretched with four different
strain rates to εH ) 0.4. There they were kept fixed, and
the decay of the stress was registered. The initial
stresses vary due to the different initial strain ratess
the higher the strain rate, the higher they weresbut
as the curves show, finally all stresses become identical.
There obviously exists a common relaxation curve, and
only the starting points differ according to the initial
strain rate.

A specific basic property of the curves becomes ap-
parent in Figure 5, which shows the stress decay

plotted vs log t for some stress relaxation curves. One
finds that the decay obeys over a large time range a
logarithmic law, ∆σ ∼ log t, and, in addition, that this
range is finite. As it appears, a final value then is
approached. Here this occurs after about 104 s. Such a
behavior is found for all strains. Figure 6 gives the
relaxation curve after stretching a sample to εH ) 0.8,
again demonstrating the logarithmic time dependence
after a certain initial period and the approach of a quasi-
stationary state at the end. Figure 7 shows, in addition,
some experiments that were less extended in time,
obtained at intermediate fixed strains demonstrating
again the validity of a logarithmic time law.

The information content of the stress relaxation
measurements is obvious: The final magnitude of stress
relaxation, ∆σ(εH, t f ∞), represents the contribution
of viscous forces to the measured stress. Consequently,
a subtraction of ∆σ(εH,∞) from σ(εH) yields the true
stress-true strain relationship which would be obtained
in the limit ε̆H f 0 where all the viscous forces vanish.
Figure 8 presents this “quasi-static” stress-strain
dependence as derived from the stretching curve in
Figure 1 and all conducted stress relaxation measure-
ments. The open symbols represent an estimate of the
quasi-static stress-strain relationship obtained by a

Figure 2. Step-cycle test carried out with a strain rate ε̆H )
0.005 s-1. Comparison with the stretching curve of Figure 1
(broken line).

Figure 3. Cyclic and basic part of the total strain as derived
from step cycle tests like the one shown in Figure 2.

Figure 4. Stress relaxation after a stretching with the
indicated strain rates to εH ) 0.4.

Figure 5. Stress relaxation ∆σ(t) ) σ(0) - σ(t) after a
stretching with three different strain rates to εH ) 0.4. Long
time experiments which indicate that after an extended period
of a stress decay obeying a log t law a final value is reached.

∆σ(t) ) σ(0) - σ(t)
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subtraction of the magnitude of stress decay after 2500
s. The filled symbols were obtained by an extrapolation
of relaxation curves on the basis of a theoretical equa-
tion which will be introduced later.

Stress relaxation measurements can not only be
carried out beginning at some point on the stretching

curve but also starting at any point on one of the cycles
in the step-cycle tests. Figure 9 provides some examples.
The filled symbols give the stresses which were mea-
sured after a constant relaxation time of 2500 s, where
a quasi-stationary state was practically reached. Note
that now stresses not always decrease but, during
unloading, a stress can also increase. The broken line
connects all the stresses reached after relaxations. It
therefore shows again the behavior in the zero strain
rate limit and thus represents the true elasticity non-
affected by viscous forces of a sample drawn to a certain
strain. Importantly, for σ ) 0 there remains also in the

Figure 6. Stress relaxation after a stretching with ε̆H ) 0.001
s-1 to εH ) 0.8 followed over a long time until a quasi-
stationary state is reached.

Figure 7. Stress relaxation ∆σ(t) after a stretching with ε̆H
) 0.005 s-1 to the given initial strains.

Figure 8. Stress-strain curve for ε̆H ) 0.005 s-1, stresses
measured at various fixed strains after a relaxation time of
2500 s (open squares) and quasi-static stress-strain depen-
dence as obtained by an extrapolation of the relaxation curves
to infinite times (filled squares).

Figure 9. Cycles carried out with a strain rate ε̆H ) 0.005
s-1 after a stretching to εH ) 0.4, 0.8, and 1.2. The broken lines
connect the relaxed stresses obtained at a series of points. They
represent the respective purely elastic stress-strain relation-
ships associated with the zero strain rate limit.
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quasi-static limit a finite strain which is a truly ir-
reversible “plastic strain”. Figure 10 depicts a measure-
ment which is focused on a determination of this plastic
strain only: It shows a succession of unloading steps
carried out after repeated spontaneous stress rises. As
the figure shows, finally an equilibrium is reached.
Figure 11 now presents the results of the decomposition
of the total strain in the plastic and the elastic compo-
nent, in a comparison with Figure 3, i.e., the decomposi-
tion following from a step-cycle test. The basic strain
εH,b is always somewhat larger than the final plastic
strain εH,p which would be found in the absence of
viscous forces. However, the difference is not too large.
As can also be noted the locations of the critical strains
εH(C) and εH(D) are invariant.

4. A Three-Component Model
There is a main finding in the relaxation measure-

ments: Imposing a certain strain on a sample by
stretching it with any chosen strain rate to that point
and then letting the stress relax will finally lead into a
quasi-stationary state. This is first indicated by the
stress relaxation curves with a finite log t range
observed along the stretching curve and then shown
clearly by the systematic stress increases and decays

defining together a limiting curve observed along the
unloading and reloading parts of the cycles. This state
is apparently well-defined, in two respects: (i) for a
given imposed strain there results a certain final stress
and vice versa, and (ii) the imposed strain has always
an irreversible plastic part and a reversible elastic part

For the sample under study the two relations are
depicted in Figures 8 and 11, respectively. With an
increase of the imposed strain the quasi-stationary
value of the stress increases as well. At first also both
the plastic strain εH,p and the elastic strain εH,e increase,
but then, at larger strains, the elastic strain reaches a
maximum.

The stress measured in the quasi-stationary state
arisessin the absence of viscous forcessfrom the two
structural components in the sample, the network of
entangled fluid sequences, and the skeleton of coupled
crystal blocks. A stretched network produces a predict-
able force; the stress transmitted by the crystal skeleton,
however, is of peculiar nature. In principle, a block
sliding could lead to a complete decay of the force acting
within the skeleton, but this is not observed. Therefore,
the skeleton of blocks certainly does not resemble a
purely viscous system. It cannot be treated like an ideal
elasto-plastic body either. Such a system would remain
purely elastic until a certain yield point, where a
permanent flow at a constant stress would set in. The
observations on semicrystalline polymers are different.
There exists a plastic flow from the very beginning,
down to smallest strains and stresses, and even more
important, this flow is limited and remains finite at
every imposed strain or applied stress. Hence, the
crystal skeleton apparently shows a behavior which can
be addressed as “finite plasticity”. This plasticity arises
together with an elasticity which is rather high and
finds its expression in the elastic strain εH,e.

What could be the background of this behavior?
Generally speaking, the plastic deformation remains
finite because the sample hardens during the flow, in a
manner, which finally brings the flow processes to an
end. Indeed, a continuous hardening during plastic flow
is a common assumption in constitutive equation theo-
ries dealing with the compression of amorphous poly-
mers (see, e.g., ref 10) or in Andrade’s equation describ-
ing the creep of metals (compare, e.g., ref 11). Our
suggestion, to introduce for semicrystalline polymers the
notion of a quasi-stationary state with a permanent,
nonvanishing stress which becomes established for each
imposed strain after a sufficiently long time, goes a step
further. In metals the hardening originates from sta-
bilizing interactions between dislocations, whereas in
semicrystalline polymers it is related to structural
changes. These are partly reversiblesthose which ac-
company the unloading-reloading in the cyclessand
partly quasi-permanentsthose which remain at the end
of the experiment shown in Figure 10. A comparison
can also be drawn to a quite different field, namely
ferromagnetism. Applying an external magnetic field H
to an initially nonmagnetic sample produces a magne-
tization M. This happens from the beginning both, in
irreversible manner by a shifting of Bloch walls, and
reversibly, by a rotation of the magnetization within
single Weiss domains. The analogy, with corresponden-
cies H/σ and M/εH, is obvious; the Bloch wall movements
correspond to the irreversible structure changes. Maybe

Figure 10. Determination of the plastic strain after a
stretching to εH ) 0.8, achieved by repeated unloading steps
after the repeated spontaneous stress increases. The broken
line is identical with that shown in Figure 9, representing the
elastic stress-strain relationship.

Figure 11. Plastic (squares) and elastic (triangles) parts of
the total strain in the zero strain rate limit in a comparison
with the basic and cyclic part derived from the step-cycle test
in Figure 2 as given in Figure 3 (broken line).

εH ) εH,p + εH,e (6)
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in the future a more microscopic understanding can be
gained and a constitutive equation developed, but at
present, one better accepts the behavior as being given
and describes it by empirical means. Therefore, the
novel step in the proposed treatment is presently just
the assumption, suggested by the experiments, of the
existence of a certain finite plasticity leading into a
quasi-stationary state.

A comment can be given with regard to the plateau
observed for the elasticity. For strains above εH(C) a
further elongation of the crystal skeleton is achieved by
a morphological transition, namely the transformation
of blocks into fibrils. This can indeed occur at a constant
or only slowly increasing stress, in some sense compa-
rable to a shear induced crystal-crystal transition.

A model constructed to treat tensile deformation of
semicrystalline polymers must include the peculiar
properties of the crystal skeleton as a core feature. The
model which we propose is depicted in Figure 12, and
the branch at the bottom deals with the stress σc
transmitted by the crystal blocks. Corresponding to the
elastic and plastic part of the deformation it is built up
from two elements with properties as defined by the
empirical relations εH,e(εH), εH,p(εH), and σc(εH). The
model includes, in addition to the crystal related branch,
two more components. The second branch, drawn in the
center, represents the stress σn arising from the network
of entangled amorphous chains. We treat the network
like an ideal rubber and thus characterize it by a certain
shear modulus G. Different from polymer melts where
the chain disentangling by reptative motions can lead
to a stress decay in compressed samples (as treated, e.g.,
in a model by Bergstrom and Boyce12), entanglements
cannot be removed in a strained semicrystalline poly-
mer. The third, upper, relaxing stress branch relates
to the stress σr which arises from the viscous forces in
the sample. These forces show up when the sample is
stretched with a finite strain rate ε̆H. This component
is meant to globally account for all the forces that
originate from motions within both the crystalline and
the amorphous parts of a semicrystalline sample.

That the three components are set to work in parallel
manner is a choice suggested by the experimental
observations. The existence of invariant critical strains
rather than constant critical stresses speaks in favor of
an essentially homogeneous strain in the sample. In-
deed, this choice is not unusual looking at the setup of
other models. In models dealing with the compression
of amorphous polymers just above Tg developed by
Boyce et al.10 or Buckley and Jones13 viscous forces and

the network stress are also chosen to act in parallel
fashion.

There is a further suggestion from the experiments,
one which relates to the description of the viscous
component in the relaxing stress branch. Stresses
measured in stretching tests generally increase with a
rising strain rate, but according to the relation

rather than in the way of a Newtonian liquid

This suggests to describe the viscous forcesas many
other authors did (e.g., Argon,14 Boyce et al.,10 Tervoort
and Govaert15,16)sby the Eyring law of viscosities

In the limit ε̆H f 0 the Eyring law becomes identical
with the Newton law, with

The Eyring law of viscosity uses two parameters: the
reference stress σ0 and the reference strain rate ε̆0,
rather than one viscosity coefficient η0 only. η0, σ0, and
ε̆0 are related by

We include in the relaxing stress part also an elastic
element, with a Young’s modulus Er. In fact, with this
choice it is possible to well reproduce the measured
relaxation curves.

5. Adjustment of the Model to the Experiments
5.1. Stress Relaxation Kinetics. Stress relaxation,

taking place at a constant imposed strain, affects in the
proposed model only the upper branch. It is possible to
treat this kinetics analytically and derive an explicit
expression. Since we deal here with uniaxial extensions
only, we can choose a simple scalar notation.

The total strain of the branch dealing with the
relaxing stress is set up of two parts representing an
elastic strain (modulus Er) and a viscous deformation
(with Eyring parameters σ0 and ε̆0). We therefore write

or

with

τr denotes the relaxation time which would be found in
the Newtonian limit of very low stresses σr. This

Figure 12. A three-component model treating the tensile
deformation properties of semicrystalline polymers.

σr ∼ ln ε̆H (7)

σr ∼ ε̆H (8)

σr

σ0
) asinh

ε̆H

ε̆0
(9)

σr ≈ σ0

ε̆0
ε̆H (10)

σ0

ε̆0
) η0 (11)

ε̆H )
σ̆r

Er
+ ε̆0 sinh(σr

σ0
) ) 0 (12)

d
dt

σr

σ0
) - 1

τr
sinh(σr

σ0
) (13)

τr
-1 )

ε̆0Er

σ0
)

Er

η0
(14)

10170 Hong et al. Macromolecules, Vol. 37, No. 26, 2004



differential equation can be solved straightforwardly
after a separation of the variables σr/σ0 and t/τr. The
result is

Using

for times in the range

shows that eq 15 can be approximated by

It is exactly this dependence which we have found
experimentally, as is shown in Figures 5-7. The slopes
in these figures, which are accurately determined, yield
the value of the reference stress σ0. The variation of the
slopes indicates a variation of this parameter with the
imposed strain. The experimental curve representing
the stress decay ∆σ is given in the model by

Fitting the experimental data by this expression yields
the three parameters σ0, τr, and σr(0). Such fits were
carried out for various values of the imposed strain and
are shown, referring to the curves previously presented
in Figures 13-15. The data representation looks satis-
factory; the values derived from the fits are always given
in the corresponding legends. As a comparison of the
fits in Figures 13 and 14 shows, there is no change in
the relaxation time τr; results suggest to choose as a
unique value for all strains, τr ) 1.6 × 104 s. The
reference stress σ0 and the total amount of stress

relaxation, given by σr(0), obviously increase with rising
strain. The values σ0 derived from the slopes are shown
in Figure 16. Interesting to note in this dependence the
critical strains at locations A, B, and C show up again.
To represent the observed dependence, we just choose
a stepwise linear function, with the first line going from
the origin to the value of σ0 at point A, followed by a
line going to σ0 at B, a further one continuing to point
C, and a final line with a slope according to the
experiment. Looking at the data given in the legends
also indicates that for the total amount of stress
relaxation, ∆σ(∞), a proportionality to σ0 holds

The values ∆σ(∞) can now be used to derive the quasi-
static stress-strain relationship from a stress-strain
curve measured at some finite strain rate. The filled
symbols presented in Figure 8 were obtained in this
manner.

5.2. Stress Contributions from the Amorphous
Network and the Crystal Skeleton. The model
describes the quasi-static stress-strain relationship as
originating from two contributions, given by the amor-
phous network, with a stress(1 - φc)σn, and the crystal
skeleton, with the stress φcσc. A separation of the two

Figure 13. Stress relaxation curves from Figure 5 in com-
parison with model calculations (τr ) 1.6 × 104 s, σ0 ) 0.29
MPa, ∆σr(∞) ) 2.5, 2.9, and 3.35 MPa).

σr(t)
σ0

) 2 atanh[tanh(σr(0)
2σ0

) exp(- t
τr

)] (15)

atanh x ) 1
2

ln(1 + x
1 - x) (|x| < 1) (16)

t
τr

, 1 (17)

σr(t)
σ0

≈ ln( t
τr

) + const (18)

∆σ ) σ(0) - σ(t) ) σr(0) - σr(t) (19)

∆σ ) σr(0) - 2σ0 atanh[tanh(σr(0)
2σ0

) exp(- t
τr

)] (20)

Figure 14. Stress relaxation curve from Figure 6 in a
comparison with model calculations (τr ) 1.6 × 104 s, σ0 ) 0.55
MPa, ∆σr(∞) ) 4.8 MPa).

Figure 15. Curves from Figure 7 in a comparison with model
calculations (τr ) 1.6 × 104 s, σ0 ) 0.22, 0.28, 0.40, and 0.56
MPa, ∆σr(∞) ) 2.3, 3.0, 4.2, and 5.7 MPa).

σr(0) ) ∆σ(∞) ∼ σ0 (21)
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contributions becomes possible considering that in the
limit of high strains the network force becomes domi-
nant. We, therefore, plot as suggested long ago by
Haward and Thackray17 the total quasi-static stress

versus λ2 - 1/λ, the measure of strain to be used for an
ideal rubber. Figure 17 presents such a plot. The
straight line showing up in the asymptotic limit con-
firms that the assumed dominance of rubber elastic
forces at high strains is indeed given. The slope of this
line yields the shear modulus of the Gaussian network:

The value obtained for this sample is G ) 1.3 MPa. This
agrees with values given in the literature for the shear
modulus of polyethylene, as it follows from either the
elastic plateau in the melt determined by dynamic
measurements or stress-strain measurements on
samples with near-to-zero crystallinity.18

The agreement implies that the stress σc which is
transmitted by the crystal skeleton approaches for high

strains a constant value. σc(εH) is obtained by a subtrac-
tion of the network stress from the total static value,
and the result is shown in Figure 18. Interesting to note,
σc reaches the plateau value at point C after an initial
increase. This again indicates that the limitation of the
elasticity of drawn samples originates from the crystal
skeleton only.

5.3. Three-Component Representation of the
Stretching Curve. So far we have determined the
model parameters related to the stresses contributed
by the crystal skeleton and the amorphous network and
also two of the three parameters which are included in
the relaxing stress component, namely, the strain-
dependent reference stress σ0(εH) and the constant final
relaxation time τr ) η0/Er. There remains only one
parameter, Er or η0, to be determined. This can be
achieved by a final adjustment which should lead to an
agreement of the model with the measured stress-
strain curve. Given the common development of the
strain in all three components of the model and referring
to the relaxing stress branch, we write for the strain
rate

Rewriting of the equation yields

Since

is strain-independent, both the viscosity coefficient η0
and the modulus Er will also have constant values.
Because of the strain dependence of σ0, this differential
equation for σr cannot be evaluated analytically but in
an easy straightforward way by numerical means. One

Figure 16. Variation of the reference stress σ0 with the
imposed strain as derived from the slopes of the stress
relaxation curves in Figure 7. σ0 controls the magnitude of
stress relaxation. The dependence can be described by a series
of lines beginning at the origin with changes at the critical
strains A (εH ) 0.04, σ0 ) 0.11), B (εH ) 0.10, σ0 ) 0.16), and
C (εH ) 0.6, σ0 ) 0.40).

Figure 17. Quasi-static stress-strain dependence shown in
Figure 8 presented in a plot of σ vs λ2 - 1/λ. The broken line
represents a Gaussian network with G ) 1.3 MPa.

φcσc + (1 - φc)σn (φc denotes the crystallinity)

(1 - φc)σn ) (1 - φc)G(λ2 - 1/λ) (22)

Figure 18. Quasi-static stress-strain curve associated with
the crystal skeleton, as obtained from the curve in Figure 17
after subtraction of the network stress. Representation by a
series of lines with changes at the critical strains A, B, and C.

ε̆H )
σ̆r

Er
+ ε̆0 sinh(σr

σ0
) (23)

ε̆H )
dσr

dεH

ε̆H

Er
+ ε̆0 sinh(σr

σ0
) (24)

dσr

dεH
) Er -

ε̆0Er

ε̆H
sinh( σr

σ0(εH)) )

Er -
σ0(εH)
τrε̆H

sinh( σr

σ0(εH)) (25)

τr ) η0/Er
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can start at the origin (σr ) 0, εH ) 0) and carry out a
stepwise integration introducing the regionwise defined
function σ0(εH) together with the known value for τr. The
contributions of the two other branches, φcσc and (1 -
φc)σn, are already fixed. The only variable which is
unknown is the modulus Er. It can be determined by a
least-squares fitting procedure, and the result is shown
in Figure 19. The figure presents as our final result the
decomposition of the total stress in the three parts φcσc,
(1 - φc)σn, and σr, derived for the stretching test carried
out with a strain rate ε̆H ) 0.005 s-1. The agreement
between the measured and the synthesized curve looks
satisfactory and was achieved choosing for the modulus
the value Er ) 90 MPa. From τr and Er there follows
for the Newtonian viscosity coefficient the result η0 )
1.4 × 106 MPa s. As the analysis shows, skeleton force
and viscous stresses from the inception are of similar
order. The network stress is at first negligible but finally
dominates. The analysis points in particular at a steady
increase of the viscous force. This increase is not related
to an increasing Newtonian viscosity η0, which is
apparently constant, but is due, formally speaking, to
a coupled increase of both Eyring parameters σ0 and
ε̆0. The reference stress σ0 can be related to an “activa-
tion volume” vA by

The observation then means that vAs14 nm3 for εH )
0.4, which is on the order of the size of the crystal
blockssdecreases with increasing strain.

6. Conclusion
Experiments probing uniaxial tensile deformation of

semicrystalline polymers indicate (1) a finite amount
of stress relaxation in drawn samples leading into a
quasi-stationary state, (2) a finite amount of plastic flow
for any imposed strain, again leading into a quasi-
stationary state, (3) a homogeneous strain distribution
in stretched samples, and (4) the presence of viscous
forces which obey Eyring’s law. On the basis of these
observations, a model is constructed composed of three
branches with a common strain. Two branches, with
stresses φcσc and(1 - φc)σn, relate to the quasi-stationary
state of the skeleton of crystallites and the amorphous
network; the third branch dealing with the relaxing
stress σr accounts in a global manner for all viscous
forces which become effective for nonzero strain rates.
Details of the kinetics of stress relaxation can be
reproduced. Application of the model, demonstrated for
a comprehensive set of data obtained for a poly(ethylene-
co-vinyl acetate), yields a decomposition of measured
stresses in the viscous part and the quasi-static contri-
butions of the network and the crystalline skeleton.
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Figure 19. Decomposition of the stretching curve shown in
Figure 8 in the three components of the model in Figure 12:
quasi-static elasto-plastic contribution of the crystal skeleton
(φcσc; from Figure 18), elastic stress of the entanglement
network ((1 - φc)σn; G ) 1.3 MPa), and relaxing viscous stress
(σr; Er ) 90 MPa, τr ) 1.6 × 104 s, σ0 from Figure 16).
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