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Even though the Hoffmann-Lauritzen theory of polymer crystallization [1] was repeatedly

criticized, its basic assumptions were generally accepted in the community. In the treatment it

was assumed that

• crystallites grow in lateral direction by a direct attachment of chain sequences from the

melt onto the growth face,

• the thickness of the crystallites at the growth front is near the stability limit as given by

the Gibbs-Thomson equation,

• the growth rate is controlled by an activation step over a free energy barrier whose height

is proportional to the crystal thickness.

The properties show up in the main equations of the theory:

• The thickness dc of the crystallites which grow at a crystallization temperature T is de-

scribed as

dc =
2σeT

∞

f

∆hf(T∞

f
− T )

+ δ (1)

where σe and ∆hf denote the surface free energy and the heat of fusion. According to

the equation, crystal thicknesses are inversely proportional to the supercooling below the
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equilibrium melting temperature T∞

f
of macroscopic crystals, apart from a minor excess δ

necessary for providing a driving force.

• The crystal growth rate is described by the equation

G = G0 exp

(

−
T ∗

A

T

)

· exp

(

−
TG

T∞

f
− T

)

. (2)

The first exponential term expresses the temperature dependence of the segmental mobility

in the melt; for temperatures far above the glass transition it follows an Arrhenius law

with some effective activation temperature T ∗

A
. The second exponential term refers to the

free energy of activation associated with the chain attachment onto the growth face. It

diverges together with dc at T∞

f
.

Hoffman and Lauritzen related the activation step to the formation of a secondary nucleus

whose extension in chain direction agrees with the crystal thickness. Their theory then yields

an expression for the parameter TG of the form

TG =
K

T
, (3)

with K being determined by ∆hf , σe and the surface free energy σl of the growth face. Proceeding

on eqs (2) and (3) many workers evaluated temperature dependent growth rate measurements

by plotting ln(G/G0) + (T ∗

A
/T ) versus 1/[T (T∞

f
− T )]. These curves usually show two or three

connected linear regions with different slopes. Hoffman and Lauritzen interpreted these changes

as changes in the growth regime and developed detailed models for three regimes labelled I,

II and III. Numerous experiments were carried out on polyethylene, and we reproduce here in

Figures 1 and 2 results from one of the last papers of Hoffman with data obtained by Armistead

[2]. Figure 1 shows growth rates of spherulites as measured in a polarizing optical microscope,

and Figure 2 presents the plot used in the evalution. Three linear ranges show up. The breaks

at 128.9 ◦C and 120.9 ◦C are interpreted as I-II and II-III regime transitions, respectively.
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Different from the multitude of growth rate measurements seen as confirmations of eq (2) and

the existence of different regimes, the underlying relationship eq (1) was rarely checked. There

is an appropriate tool, namely the determination of the crystallite thickness by small angle X-

ray scattering experiments, based upon the deduced correlation function or interface distance

distribution function. Beginning about ten years ago, we used this technique in temperature de-

pendent investigations of several polymer systems: s- and i-polypropylene, polyethylene, poly(ǫ-

caprolactone) and poly(1-butene), if possible both for homopolymers and derived statistical

copolymers [3]. The results were clear, but at first surprising because they contradict eq (1).

The law for the temperature dependence of dc derived from the experiments has also the form

of the Gibbs-Thomson equation but includes another controlling temperature, being given by

dc =
1

Cc(T∞

c − T )
. (4)

The temperature T∞

c which determines the crystal thickness is always located above T∞

f
. In

the case of polyethylene we found T∞

c =154 ◦C , which is about 10 K above the equilibrium

melting point. In addition, it was observed that thicknesses of crystals, developing at a given

temperature, do not change if co-units or stereo-defects are incorporated in the chain. dc values of

linear polyethylene, poly(ethylene-co-octene)s and poly(ethylene-co-butene)s are all commonly

described by eq (4) with T∞

c =154 ◦C and a unique Cc. Eq (1) enters into eq (2). With eq

(1) being incorrect, the growth rate equation cannot be correct either. So we examined its

validity. The results are reported in this short note.

Applying eq (2) means to assume from the beginning as a fact, that the activation energy

diverges at the equilibrium melting point, thus bringing the growth rate down to zero. Actually,

whether or not this is true, can be checked in straightforward manner by the growth rate

measurements. We replace in the equation the set parameter T∞

f
by a variable temperature

Tzero, write

ln
G

G0

+
T ∗

A

T
= −

TG

Tzero − T
(5)
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and differentiate. A reordering leads to

(

−
d ln(G/G0)

dT
+

T ∗

A

T 2

)

−1/2

= T
−1/2

G
(Tzero − T ) . (6)

Application of this equation enables Tzero to be determined. The prerequisite is an accurate

determination of the derivative d ln(G/G0)/dT . We first applied the procedure to the data of

Armistead and Hoffman of Figure 1, and the result is shown in Figure 3. According to eq (6) a

linear continuation of the data down to G = 0 yields the ‘zero growth temperature ’ Tzero. As

is obvious, such an extrapolation does not lead to T∞

f
=144.7 ◦C . However, the accuracy of the

data is insufficient for a reliable determination of Tzero.

We therefore carried out an experiment on linear polyethylene ourselves. Our sample, pur-

chased from Sigma-Aldrich Co., had a molar mass of 6 × 104 g mol−1. We purified it by a

dissolution in hot toluene in order to keep the number of heterogeneous nuclei as low as possible.

Since we were only interested in the range of high crystallization temperatures, the experiment

in a polarizing optical microscope with a heating stage was started at 128 ◦C , after cooling a

melt from 160 ◦C . We observed and registered with a digital camera the growth of spherulites

in a layer with a thickness of about 1 µm. One isolated spherulite was selected and then its

growth followed at a series of temperatures which were passed through upon a stepwise heating

(∆T=0.3 K). Five values of the spherulite size were determined as a function of time at each

temperature to derive the growth rate. Because the spherulites did not show up as perfect cir-

cles, we determined the smallest ellipse which enclosed the selected spherulite. From the area

A of the enclosing ellipse we derived the length R entering into the growth rate determination

setting A = πR2. At each temperature we determined as a function of time the changes ∆R

with regard to the respective initial value. Figure 4 collects the results thus obtained. The

slope of unity in the log-log representation for all temperatures demonstrates the linearity of the

growth process. Growth rates can be directly derived, and they are included in Figure 1 in a

comparison with the Armistead-Hoffman data. As to be noted, the growth rates of our sample
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are enhanced against the Armistead sample by a constant factor - with the only exception of

the two points at the highest temperatures in the Armistead experiment. The enhancement

might be due to the somewhat lower molar mass (the Armistead sample had Mw = 7.4 × 104

g mol−1). The constant factor vanishes if we consider the derivatives in the manner of eq (6).

Our data are also included in Figure 3, and as comparison shows, both sets of data agree with

each other within the error limits of the experiments. As also to be noted, our data have indeed

the higher accuracy we were striving for. They allow to carry out a linear extrapolation down

to G = 0, with an unambiguous result: The zero growth temperature of linear polyethylene is

132.6±0.5 ◦C . This is far away from the equilibrium melting point. Hence, the growth rate

of polyethylene is determined by the distance to Tzero=132.6 ◦C rather than the supercooling

below T∞

f
as is conventionally assumed.

In the differentiation which transforms eq (2) into eq (6) we neglected the weak temperature

dependence of TG expressed by eq (3). To be sure whether or not this weak temperature

dependence is really negligible, we determined Tzero additionally by a least square fit of our data

to eq (2) with eq (3), replacing T∞

f
by the variable Tzero. The procedure yielded exactly the

same value for Tzero, and Figure 5 presents the data points together with the adjusted theoretical

curve. Also the prefactor G0 might show some weak temperature dependence, but the effect is

surely just as small as for TG.

If one accepts 132.6 ◦C as the correct zero growth temperature one can ask again about

the occurrence of different growth regimes. Figure 6 shows the corresponding plot, with a clear

result: The break in Figure 2 which was interpreted as indicating a transition from regime I to

II has disappeared in both sets of data. We cannot comment on the relevance of the apparent

growth regime transition at 120.9 ◦C in Figure 2, but notice that it does not show up in the

plot of the temperature derivatives in Figure 3. On the other hand, in this figure there appears

a break at 125 ◦C in-between the two breaks in Figure 2. We cannot comment on this feature
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either. In our experiment we did not reach this range of lower temperatures. Both, a too high

spherulite density and the much enhanced growth rate hindered us to obtain reliable results.

Hence, in conclusion, the experiments show that crystallization of polyethylene is controlled

by two characteristic temperatures which both are different from T∞

f
:

• The crystal thickness is given by eq (4) with T∞

c =154 ◦C (Cc = 3.25×10−3 nm−1K−1[4])

• The growth rate is given by

G = G0 exp

(

−
T ∗

A

T

)

· exp

(

−
TG

Tzero − T

)

(7)

with Tzero=132.6±0.5 ◦C (TG = 18 K; the first exponential factor has to be changed at

low temperatures when the full Vogel-Fulcher expression exp(−(TA/(T − TV)) must be

used).

The findings for polyethylene are not exceptional. We obtained a similar result for poly(ǫ-

caprolactone), also with different temperatures for T∞

f
(99 ◦C ), T∞

c (130 ◦C ) and Tzero

(77 ◦C )[5].

For us, these results come as expected. They agree with the view proposed and advocated

by us since several years [6]. We are convinced that the pathway followed in the growth of

polymer crystallites includes an intermediate phase of mesomorphic character. We think that a

thin layer with mesomorphic inner structure forms between the lateral crystal face and the melt,

stabilized by epitaxial forces. The first step in the growth process is an attachment of chain

sequences from the melt onto the growth face of the mesomorphic layer. The high mobility of the

chains in the layer allows a spontaneous thickening up to a critical value were the layer solidifies

under formation of block-like crystallites. A perfectioning of the crystallites then leads to their

final state. We constructed a thermodynamic scheme dealing with the transitions between melt,

mesomorphic layers and crystallites which follow one after the other during the growth process

[7]. T∞

c and Tzero are identified in this scheme with the temperatures of the (hidden) transitions
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from the mesomorphic to the crystalline and from the amorphous to the mesomorphic phase.

The mesomorphic phase of polyethylene seems to be identical with the well-known hexagonal

phase stable under high pressure-high temperature conditions. Figure 14 in ref.[7] shows a

p/T diagram of the three phases of polyethylene as conjectured from various observations. It

predicts for normal pressure conditions a value of 134 ◦C for the temperature of the hidden

transition between the amorphous and the mesomorphic phase, in nearly perfect agreement with

the experiment. In our view the activation step controlling crystal growth in polyethylene is to

be related to a straightening of chain sequences prior to the attachment onto the surface of a

mesomorphic layer. Different from a direct transition into the all-trans conformation, attachment

onto the mesomorphic layer is possible for a variety of overall straightened conformations, which

reduces the entropic energy barrier. In fact, as is indicated by the unusually rapid rise of

the growth rate on lowering the crystallization temperature, the activation barrier is low in

polyethylene. The height of the mesomorphic growth front increases when the crystallization

temperature is raised and would diverge at 132.6 ◦C . A crystallization mediated by a transient

mesomorphic phase cannot continue up to this temperature but ends before, probably already

very near to the highest temperature (131 ◦C ) reached in this experiment. From thereon,

crystallites must grow by direct attachment of chain sequences on crystalline growth faces. The

growth rate equation then turns into a dependence as described by eq (2). As a matter of fact,

so far this range was never reached in experiments. They all ended at 131-132 ◦C .
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Figure 1: Temperature dependence of the radial growth rate G of linear polyethylene: Data of

Armistead & Hoffman [2] (filled squares) and our data (open triangles)

9



0.8 1.0 1.2 1.4 1.6 1.8

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

I

II

III

1/(T(T
f

∞

-T)) [10
-4
 K

-2
]

G
 e

x
p

(T
* A

/T
) 

[m
 s

-1
]

Figure 2: Data of Armistead & Hoffman [2]: Representation suggested by eq (2) (T ∗

A
= 2890 K,

T∞

f
= 144.7 ◦C )

10



115 120 125 130 135 140

0.0

0.3

0.6

0.9

1.2

1.5

1.8

132.6 
o
C

T [
o
C]

(-
d

ln
(G

/G
0
)/

d
T

+
T

* A
/(

T
)2

)-1
/2

Figure 3: The two sets of data in Figure 1: Representation applying eq (6) to determine Tzero

(T ∗

A
= 2890 K). Linear extrapolation yields Tzero = 132.6 ◦C
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Figure 4: Sample of polyethylene (Mw = 6×104 g mol−1): Increase of the radius of a spherulite

∆R as a function of ∆t observed at a series of step-like increasing temperatures beginning at

128 ◦C and ending at 131 ◦C (steps ∆T = 0.3 K )
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Figure 5: Sample of polyethylene (Mw = 6×104 g mol−1): Data fit based on eq (2) (T ∗

A
=2890

K). The fitting procedure yields again Tzero = 132.6 ◦C
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Figure 6: Data representation suggested by eq (7) with Tzero = 132.6 ◦C (T ∗

A
= 2890K). The

position of the break at 128.9 ◦C in Figure 2 is indicated by a circle
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